Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Kidney Blood Press Res ; 49(1): 137-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266504

RESUMO

INTRODUCTION: The process of vascular calcification has severe clinical consequences in a number of diseases, including diabetes, atherosclerosis, and end-stage renal disease. In the present study, we investigated the effect of policosanol (Poli), genistein (Gen), and vitamin D (VitD) separately and in association to evaluate the possible synergistic action on inorganic phosphate (Pi)-induced calcification of vascular smooth muscle cells (VSMCs). METHODS: Primary human VSMCs were cultured with either growth medium or growth medium supplemented with calcium and phosphorus (calcification medium) in combination with Poli, Gen, and VitD. Alizarin Red staining, mineralization, and the protein expression of RUNX2 and superoxide dismutase-2 (SOD2) were investigated. RESULTS: All three substances tested were effective at reducing osteogenic differentiation of VSMCs in a dose-dependent manner. Poli+Gen, Poli+VitD, Gen+VitD treatment induced a greater inhibition of calcification and RUNX2 expression compared to single compounds treatments. Moreover, the association of Poli+Gen+VitD (Reduplaxin®) was more effective at inhibiting VSMCs mineralization and preventing the increase in RUNX2 expression induced by calcification medium but not modified SOD2 expression. CONCLUSIONS: The association of Pol, Gen, and VitD (Reduplaxin®) has an additive inhibitory effect on the calcification process of VSMCs induced in vitro by a pro-calcifying medium.


Assuntos
Álcoois Graxos , Genisteína , Músculo Liso Vascular , Calcificação Vascular , Vitamina D , Humanos , Vitamina D/farmacologia , Álcoois Graxos/farmacologia , Células Cultivadas , Calcificação Vascular/prevenção & controle , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Genisteína/farmacologia , Genisteína/uso terapêutico , Superóxido Dismutase/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 873-888, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37522915

RESUMO

Vascular calcification (VC) is a major risk factor for cardiovascular events. A mutual interplay between inflammation, oxidative stress, apoptosis, and autophagy is implicated in its development. Herein, we aimed to evaluate the potential protective effects of canagliflozin in a vitamin D3 plus nicotine (VDN) model of VC, and to explore potential mechanisms. VC was induced by VDN in adult male Wistar rats on day one. Then, rats were randomly assigned into three groups to receive canagliflozin (10 mg or 20 mg/kg/day) or its vehicle for 4 weeks. Age-matched normal rats served as a control group. After euthanization, aorta and kidneys were harvested for biochemical and histopathological evaluation of calcification. Aortic markers of oxidative stress, alkaline phosphatase (ALP) activity, runt-related transcription factor (Runx2) and bone morphogenic protein-2 (BMP-2) levels were determined. Additionally, the protein expression of autophagic markers, LC3 and p62, and adenosine monophosphate activated protein kinase (AMPK) were also assessed in aortic homogenates. Canagliflozin dose-dependently improved renal function, enhanced the antioxidant capacity of aortic tissues and reduced calcium deposition in rat aortas and kidneys. Both doses of canagliflozin attenuated ALP and osteogenic markers while augmented the expression of autophagic markers and AMPK. Histopathological examination of aortas and kidneys by H&E and Von Kossa stain further support the beneficial effect of canagliflozin. Canagliflozin could alleviate VDN-induced vascular calcification, in a dose dependent manner, via its antioxidant effect and modulation of autophagy. Further studies are needed to verify whether this effect is a member or a class effect.


Assuntos
Colecalciferol , Calcificação Vascular , Ratos , Masculino , Animais , Colecalciferol/farmacologia , Nicotina/efeitos adversos , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Proteínas Quinases Ativadas por AMP , Ratos Sprague-Dawley , Ratos Wistar , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/prevenção & controle , Autofagia
3.
Nephrol Dial Transplant ; 39(2): 305-316, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37451818

RESUMO

BACKGROUND: In patients with chronic kidney disease (CKD), vascular calcification (VC) is common and is associated with a higher risk of all-cause mortality. Shh, one ligand for Hedgehog (Hh) signaling, participates in osteogenesis and several cardiovascular diseases. However, it remains unclear whether Shh is implicated in the development of VC. METHODS: Inorganic phosphorus 2.6 mM was used to induce vascular smooth muscle cells (VSMCs) calcification. Mice were fed with adenine diet supplement with 1.2% phosphorus to induce VC. RESULTS: Shh was decreased in VSMCs exposed to inorganic phosphorus, calcified arteries in mice fed with an adenine diet, as well as radial arteries from patients with CKD presenting VC. Overexpression of Shh inhibited VSMCs ostosteoblastic differentiation and calcification, whereas its silencing accelerated these processes. Likewise, mice treated with smoothened agonist (SAG; Hh signaling agonist) showed alleviated VC, and mice treated with cyclopamine (CPN; Hh signaling antagonist) exhibited severe VC. Additionally, overexpression of Gli2 significantly reversed the pro-calcification effect of Shh silencing on VSMCs, suggesting that Shh inhibited VC via Gli2. Mechanistically, Gli2 interacted with Runx2 and promoted its ubiquitin proteasomal degradation, therefore protecting against VC. Of interest, the pro-degradation effect of Gli2 on Runx2 was independent of Smurf1 and Cullin4B. CONCLUSIONS: Our study provided deeper insight to the pathogenesis of VC, and Shh might be a novel potential target for VC treatment.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Camundongos , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Calcificação Vascular/etiologia , Calcificação Vascular/prevenção & controle , Calcificação Vascular/metabolismo , Insuficiência Renal Crônica/patologia , Fósforo/metabolismo , Adenina , Miócitos de Músculo Liso/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo
4.
Environ Toxicol ; 39(4): 2363-2373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38156404

RESUMO

Vascular calcification (VC) is a common complication of chronic kidney disease (CKD). VC is a gene-regulated process similar to osteogenic differentiation. There are still no convincing schemes to prevent and reduce the development of VC. It has been reported that hypoxia-inducing factor 1α (HIF-1α) and endothelin-1(ET-1) are related to VC. In this study, we found that the expression of ET-1 and HIF-1α was enhanced after VC, the interaction between HIF-1α and ET-1 was confirmed by CO-IP and luciferase experiments. We found that ET-1 was an upregulated differential gene of calcified vascular smooth muscle cells (VSMCs) through gene sequencing. However, hypoxia-inducing factor 2α (HIF-2α) and HIF-1α have antagonistic effects on each other. HIF-1α is a pro-inflammatory cytokine, and HIF-2α can improve inflammation and fibrosis. Roxadustat, as a selective PHD3 inhibitor, preferentially activates HIF-2α. It is still unclear whether roxadustat improves VC in CKD by regulating the expression of HIF-2α/HIF-1α. Alizarin red staining and western blot as well as immunohistochemical results showed that roxadustat could significantly reduce the degree of vascular and VSMCs calcification in CKD rats. Serum HIF-1α and ET-1 were significantly decreased after roxadustat treatment. In addition, western blot results showed that roxadustat could decrease the expression of HIF-1α and ET-1 in vascular tissues and calcified VSMC, but HIF-2α expression significantly increased. Interestingly, our study confirmed that activation of HIF-1α or inhibition of HIF-2α reversed the ameliorating effect of roxadustat on VC, proving that the effect mediated by roxadustat is HIF-2α/HIF-1α dependent. We have demonstrated for the first time that roxadustat improves VC in CKD rats by regulating HIF-2α/HIF-1α, thus providing a new idea for the application of roxadustat in VC of CKD.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Animais , Osteogênese , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/prevenção & controle , Calcificação Vascular/complicações , Hipóxia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia
5.
ACS Nano ; 17(24): 24773-24789, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38055864

RESUMO

As the prevalence of vascular calcification (VC), a strong contributor to cardiovascular morbidity and mortality, continues to increase, the need for pharmacologic therapies becomes urgent. Sodium thiosulfate (STS) is a clinically approved drug for therapy against VC; however, its efficacy is hampered by poor bioavailability and severe adverse effects. Plant-derived extracellular vesicles have provided options for VC treatment since they can be used as biomimetic drug carriers with higher biosafety and targeting abilities than artificial carriers. Inspired by natural grapefruit-derived extracellular vesicles (EVs), we fabricated a biomimetic nanocarrier comprising EVs loaded with STS and further modified with hydroxyapatite crystal binding peptide (ESTP) for VC-targeted delivery of STS. In vitro, the ESTP nanodrug exhibited excellent cellular uptake capacity by calcified vascular smooth muscle cells (VSMCs) and subsequently inhibited VSMCs calcification. In the VC mice model, the ESTP nanodrug showed preferentially the highest accumulation in the calcified arteries compared to other treatment groups. Mechanistically, the ESTP nanodrug significantly prevented VC via driving M2 macrophage polarization, reducing inflammation, and suppressing bone-vascular axis as demonstrated by inhibiting osteogenic phenotype trans-differentiation of VSMCs while enhancing bone quality. In addition, the ESTP nanodrug did not induce hemolysis or cause any damage to other organs. These results suggest that the ESTP nanodrug can prove to be a promising agent against VC without the concern of systemic toxicity.


Assuntos
Citrus paradisi , Vesículas Extracelulares , Calcificação Vascular , Animais , Camundongos , Biomimética , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/metabolismo , Calcificação Vascular/prevenção & controle , Vesículas Extracelulares/metabolismo
6.
J Vet Sci ; 24(5): e69, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38031648

RESUMO

BACKGROUND: Kalkitoxin (KT) is an active lipopeptide isolated from the cyanobacterium Lyngbya majuscula found in the bed of the coral reef. Although KT suppresses cell division and inflammation, KT's mechanism of action in vascular smooth muscle cells (VSMCs) is unidentified. Therefore, our main aim was to investigate the impact of KT on vascular calcification for the treatment of cardiovascular disease. OBJECTIVES: Using diverse calcification media, we studied the effect of KT on VSMC calcification and the underlying mechanism of this effect. METHODS: VSMC was isolated from the 6 weeks ICR mice. Then VSMCs were treated with different concentrations of KT to check the cell viability. Alizarin red and von Kossa staining were carried out to examine the calcium deposition on VSMC. Thoracic aorta of 6 weeks mice were taken and treated with different concentrations of KT, and H and E staining was performed. Real-time polymerase chain reaction and western blot were performed to examine KT's effect on VSMC mineralization. Calcium deposition on VSMC was examined with a calcium deposition quantification kit. RESULTS: Calcium deposition, Alizarin red, and von Kossa staining revealed that KT reduced inorganic phosphate-induced calcification phenotypes. KT also reduced Ca++-induced calcification by inhibiting genes that regulate osteoblast differentiation, such as runt-related transcription factor 2 (RUNX-2), SMAD family member 4, osterix, collagen 1α, and osteopontin. Also, KT repressed Ca2+-induced bone morphogenetic protein 2, RUNX-2, collagen 1α, osteoprotegerin, and smooth muscle actin protein expression. Likewise, Alizarin red and von Kossa staining showed that KT markedly decreased the calcification of ex vivo ring formation in the mouse thoracic aorta. CONCLUSIONS: This experiment demonstrated that KT decreases vascular calcification and may be developed as a new therapeutic treatment for vascular calcification and arteriosclerosis.


Assuntos
Calcificação Vascular , Animais , Camundongos , Cálcio/metabolismo , Células Cultivadas , Colágeno/metabolismo , Camundongos Endogâmicos ICR , Músculo Liso Vascular/metabolismo , Transdução de Sinais , Calcificação Vascular/prevenção & controle , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/metabolismo , Calcificação Vascular/veterinária
7.
Biomed Pharmacother ; 168: 115693, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844356

RESUMO

Vascular calcification (VC), an actively regulated process, has been recognized as an independent and strong predictor of cardiovascular disease (CVD) and mortality worldwide. Diet has been shown to have a major role in the progression of VC. Oxidative stress (OS), a common pro-calcification factor, is closely related to VC, and evidence strongly suggests that dietary antioxidants directly prevent VC. Herein, we provided an overview of OS and its key role in VC and underlined the mechanisms of harmful effects of OS on VC. Furthermore, we introduced dietary antioxidants, and discussed about surrounding the challenges of dietary antioxidants in VC management. This review will benefit future research about the effects of dietary antioxidants on cardiovascular health.


Assuntos
Doenças Cardiovasculares , Calcificação Vascular , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Calcificação Vascular/prevenção & controle , Doenças Cardiovasculares/prevenção & controle , Dieta , Estresse Oxidativo
8.
Cardiol Rev ; 31(6): 293-298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796966

RESUMO

Lipid-lowering therapy with statins is well recognized as an effective therapy in reducing adverse cardiovascular events. However, the relationship between statin therapy and progression of coronary artery calcification (CAC) is unclear. A few of studies suggested that statins fail to slow and even accelerate progression of CAC; meanwhile, some researchers demonstrate opposite results. With the purpose of seeking out the effect of statin therapy on CAC, we summarized the existing evidence on statins and undertook meta-analyses of clinical trials assessing the effect of statin therapy on CAC. Fourteen trials were identified suitable for inclusion in the analysis of the effect of statin treatment on CAC, of which 11 were randomized controlled trails, 1 was case-control study, 1 was cross-sectional study, and 1 was observational study. In the meta-analysis of CAC progression, statin therapy seemed to accelerate the progression of CAC. Meanwhile, the analysis revealed a significant correlation between statin treatment and lower risk of cardiovascular events. In conclusion, meta-analyses of the available trials have shown a significant reduction of risk of cardiovascular events. In contrast, statins accelerated CAC. This suggests that statin-mediated atheroma calcification may enhance plaque stability and reduce the risk of plaque rupture.


Assuntos
Doença da Artéria Coronariana , Inibidores de Hidroximetilglutaril-CoA Redutases , Placa Aterosclerótica , Calcificação Vascular , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Estudos de Casos e Controles , Estudos Transversais , Calcificação Vascular/prevenção & controle , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/tratamento farmacológico , Doença da Artéria Coronariana/prevenção & controle , Doença da Artéria Coronariana/tratamento farmacológico , Fatores de Risco , Estudos Observacionais como Assunto
9.
Cardiovasc Res ; 119(13): 2368-2381, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37523743

RESUMO

AIMS: Vascular calcification (VC) is prevalent in pathological processes such as diabetes, chronic kidney disease (CKD), and atherosclerosis, but effective therapies are still lacking by far. Canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor, has been approved for the treatment of type 2 diabetes mellitus and exhibits beneficial effects against cardiovascular disease. However, the effect of CANA on VC remains unknown. In this study, we hypothesize that CANA protects against VC. METHODS AND RESULTS: Micro-computed tomography analysis and alizarin red staining revealed that CANA treatment prevented aortic calcification in CKD rats and in VitD3-overloaded mice. Moreover, CANA alleviated the calcification of rat and human arterial rings. Alizarin red staining revealed that calcification of rat and human vascular smooth muscle cells (VSMCs) was attenuated by CANA treatment and this phenomenon was confirmed by calcium content assay. In addition, CANA downregulated the expression of osteogenic differentiation markers Runx2 and BMP2. Of interest, qPCR and western blot analysis revealed that CANA downregulated the expression of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3), and the downstream signalling molecules Caspase-1 and IL-1ß in VSMCs as well. Both NLRP3 inhibitor MCC950 and knockdown of NLRP3 by siRNA independently resulted in decreased calcification of VSMCs. By contrast, activation of NLRP3 exacerbated VSMC calcification, and this effect was prevented by the addition of CANA. CONCLUSIONS: Our study for the first time demonstrates that CANA exerts a protective effect on VC at least partially via suppressing the NLRP3 signalling pathway. Therefore, supplementation of CANA as well as inhibition of NLRP3 inflammasome presents a potential therapy for VC.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canagliflozina/farmacologia , Leucina/metabolismo , Leucina/farmacologia , Osteogênese , Diabetes Mellitus Tipo 2/metabolismo , Domínio Pirina , Microtomografia por Raio-X , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/genética , Calcificação Vascular/prevenção & controle , Insuficiência Renal Crônica/metabolismo , Glucose/metabolismo , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Sódio/metabolismo , Miócitos de Músculo Liso/metabolismo
10.
Prev Med ; 173: 107556, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37268173

RESUMO

Vascular calcification is highly prevalent in diabetes patients, with detrimental consequences and no effective prevention and treatment strategies are currently available. Though the protective effect of lipoxin (LX) against vascular diseases has been demonstrated, its effect on diabetic vascular calcification remains unknown. AGEs dose-dependently induced calcification and the expression of osteogenesis-related markers, coupled with the activation of yes-associated protein (YAP). Mechanistically, YAP activation enhanced the AGE-induced osteogenic phenotype and calcification, but inhibition of YAP signalling alleviated this response. Further, an in vivo diabetic mouse model was established using a combination of a high-fat diet and multiple formulations of low-dose streptozotocin. Consistent with the in vitro results, diabetes promoted YAP expression and its subcellular localization in the nucleus in the arterial tunica media. The results demonstrate that LX attenuates the trans-differentiation and calcification of VSMCs in diabetes mellitus via YAP signalling, suggesting LX to be a potent therapeutic for preventing diabetic vascular calcification.


Assuntos
Diabetes Mellitus , Lipoxinas , Calcificação Vascular , Camundongos , Humanos , Animais , Lipoxinas/efeitos adversos , Transdução de Sinais , Calcificação Vascular/prevenção & controle , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Osteogênese
11.
Arterioscler Thromb Vasc Biol ; 43(8): 1533-1548, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381989

RESUMO

BACKGROUND: Vascular calcification (VC) is a highly prevalent complication of chronic kidney disease (CKD) and is associated with the higher morbidity-mortality of patients with CKD. VDR (vitamin D receptor) has been proposed to play a role in the osteoblastic differentiation of vascular smooth muscle cells (VSMCs), but the involvement of vitamin D in VC associated to CKD is controversial. Our aim was to determine the role of local vitamin D signaling in VSMCs during CKD-induced VC. METHODS: We used epigastric arteries from CKD-affected patients and individuals with normal renal function, alongside an experimental model of CKD-induced VC in mice with conditional deletion of VDR in VSMC. In vitro, experiments in VSMC with or without VDR incubated in calcification media were also used. RESULTS: CKD-affected patients and mice with CKD showed an increase in VC, together with increased arterial expression of VDR compared with controls with normal renal function. Conditional gene silencing of VDR in VSMCs led to a significant decrease of VC in the mouse model of CKD, despite similar levels of renal impairment and serum calcium and phosphate levels. This was accompanied by lower arterial expression of OPN (osteopontin) and lamin A and higher expression of SOST (sclerostin). Furthermore, CKD-affected mice showed a reduction of miR-145a expression in calcified arteries, which was significantly recovered in animals with deletion of VDR in VSMC. In vitro, the absence of VDR prevented VC, inhibited the increase of OPN, and reestablished the expression of miR-145a. Forced expression of miR-145a in vitro in VDRwt VSMCs blunted VC and decreased OPN levels. CONCLUSIONS: Our study provides evidence proving that inhibition of local VDR signaling in VSMCs could prevent VC in CKD and indicates a possible role for miR-145a in this process.


Assuntos
MicroRNAs , Insuficiência Renal Crônica , Calcificação Vascular , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Receptores de Calcitriol/genética , Calcificação Vascular/genética , Calcificação Vascular/prevenção & controle , Rim/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vitamina D/metabolismo , Miócitos de Músculo Liso/metabolismo
12.
BMJ Open ; 13(5): e071885, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208133

RESUMO

INTRODUCTION: Vitamin K has been suggested to have protective effects against progression of vascular calcification and development of cardiovascular disease (CVD). However, few well-powered randomised controlled trials have examined whether vitamin K prevents progression of vascular calcification in individuals from the general population. The aim of the InterVitaminK trial is to investigate the effects of vitamin K supplementation (menaquinone-7, MK-7) on cardiovascular, metabolic, respiratory and bone health in a general ageing population with detectable vascular calcification. METHODS AND ANALYSIS: The InterVitaminK trial is a randomised, double-blinded, placebo-controlled, trial. A total of 450 men and women aged 52-82 years with detectable coronary artery calcification (CAC), but without manifest CVD, will be randomised (1:1) to receive daily MK-7 (333 µg/day) or placebo tablets for 3 years. Health examinations are scheduled at baseline, and after 1, 2 and 3 years of intervention. Health examinations include cardiac CT scans, measurements of arterial stiffness, blood pressure, lung function, physical function, muscle strength, anthropometric measures, questionnaires on general health and dietary intake, and blood and urine sampling. The primary outcome is progression of CAC from baseline to 3-year follow-up. The trial has 89% power to detect a between-group difference of at least 15%. Secondary outcomes are bone mineral density, pulmonary function and biomarkers of insulin resistance. ETHICS AND DISSEMINATION: Oral MK-7 supplementation is considered safe and has not been found to cause severe adverse events. The Ethical Committee of the Capital Region (H-21033114) approved the protocol. Written informed consent is obtained from all participants and the trial is conducted in accordance with the Declaration of Helsinki II. Both negative and positive findings will be reported. TRIAL REGISTRATION NUMBER: NCT05259046.


Assuntos
Doença da Artéria Coronariana , Calcificação Vascular , Masculino , Humanos , Feminino , Vitamina K , Densidade Óssea , Vitamina K 2/farmacologia , Vitamina K 2/uso terapêutico , Pulmão , Doença da Artéria Coronariana/tratamento farmacológico , Calcificação Vascular/prevenção & controle , Suplementos Nutricionais , Dinamarca , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Calcif Tissue Int ; 113(2): 216-228, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37099142

RESUMO

Patients with chronic kidney disease develop vascular calcification, owing to impaired calcium and phosphate metabolism. The prevention of vascular calcification is important to improve the prognosis of such patients. In this study, we investigated whether treatment with FYB-931, a novel bisphosphonate compound, prevents vascular calcification in rat aortic rings cultured in high-phosphate medium for 9 days, assessed by measurement of the calcium content and the degree of calcium deposition, visualized using von Kossa staining. The effect on the transformation of calciprotein particles (CPPs) from primary to secondary CPPs was assessed using a fluorescent probe-based flow cytometric assay. FYB-931 dose-dependently prevented high phosphate-induced aortic calcification, but failed to rapidly cause the regression of high phosphate-induced vascular calcification once it had developed. Furthermore, the treatment dose-dependently inhibited the high phosphate-induced transformation from primary to secondary CPPs. In addition, the treatment with FYB-931 prevented the transformation from primary to secondary CPPs in vitamin D3-treated rats as a model of ectopic calcification, consistent with the results from rat aortic rings. In conclusion, treatment with FYB-931 prevents high phosphate-induced rat aortic vascular calcification by altering the dynamics of CPP transformation. This finding suggests that inhibition of the transformation from primary to secondary CPPs is an important target for the prevention of vascular calcification in patients with chronic kidney disease.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Animais , Cálcio/metabolismo , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/prevenção & controle , Calcificação Vascular/complicações , Difosfonatos , Insuficiência Renal Crônica/complicações , Fosfatos
15.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2587-2598, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37058187

RESUMO

Cerebral ischemia reperfusion injury (CIR) is one of the clinical manifestations encountered during the management of stroke. High prevalence of intracranial arterial calcification is reported in stroke patients. However, the impact of vascular calcification (VC) in the outcome of CIR and the efficacy of mechanical preconditioning (IPC) and pharmacological conditioning with sodium thiosulphate (STS) in ameliorating IR remains unclear. Two experimental models namely carotid artery occlusion (n = 36) and brain slice models (n = 18) were used to evaluate the efficacy of STS in male Wistar rats. IR was inflicted in rat by occluding carotid artery for 30 min followed by 24-h reperfusion after STS (100 mg/kg) administration. Brain slice model was used to reconfirm the results to account blood brain barrier permeability. Further, brain slice tissue was utilised to evaluate the efficacy of STS in VC rat brain by measuring the histological alterations and biochemical parameters. Pre-treatment of STS prior to CIR in intact animal significantly reduced the IR-associated histopathological alterations in brain, declined oxidative stress and improved the mitochondrial function found to be similar to IPC. Brain slice model data also confirmed the neuroprotective effect of STS similar to IPC in IR challenged tissue slice. Higher tissue injury was noted in VC brain IR tissue than normal IR tissue. Therapeutic efficacy of STS was evident in VC rat brain tissues and normal tissues subjected to IR. On the other hand, IPC-mediated protection was noted only in IR normal and adenine-induced VC brain tissues not in high-fat diet (HFD) induced VC brain tissues. Based on the results, we concluded that similar to IPC, STS was effective in attenuating IR injury in CIR rat brain. Vascular calcification adversely affected the recovery protocol of brain tissues from ischemic insult. STS was found to be an effective agent in ameliorating the IR injury in both adenine and HFD induced vascular calcified rat brain, but IPC-mediated neuroprotection was absent in HFD-induced VC brain tissues.


Assuntos
Traumatismo por Reperfusão , Acidente Vascular Cerebral , Calcificação Vascular , Ratos , Masculino , Animais , Ratos Wistar , Traumatismo por Reperfusão/patologia , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/prevenção & controle , Encéfalo/patologia , Adenina
16.
ABC., imagem cardiovasc ; 36(1): e368, abr. 2023. ilus, tab
Artigo em Português | LILACS | ID: biblio-1512933

RESUMO

Fundamento: As calcificações de artérias coronárias (CAC) mostram-se como fator preditivo de doenças cardiovasculares (DCV). A tomografia computadorizada (TC) de tórax com protocolo de aquisição de baixa dose apresenta acurácia na identificação de CAC e propicia achados incidentais dessas calcificações, que são comumente negligenciados. Este estudo analisará a prevalência de achados incidentais de calcificação em artérias coronárias em indivíduos não cardiopatas submetidos à TC de tórax. Métodos: Estudo transversal consecutivo de caráter analítico e descritivo. Foram incluídos indivíduos de ambos os sexos que realizaram TC de tórax por encaminhamento, acima de 18 anos e não cardiopatas. A coleta de dados foi realizada por meio de prontuários e ficha de anamnese auto aplicada. As variáveis referentes às CAC e à extensão do comprometimento foram obtidas a partir da reavaliação das imagens de TC de tórax disponíveis no sistema da instituição. Os exames foram anonimizados e avaliados por dois médicos radiologistas experientes. Considerou-se como estatisticamente significativo p≤0,05. Resultados: Foram analisados 397 exames. Encontrou-se prevalência de calcificações em 176 (44%) dos casos. A existência dessas calcificações coronárias está relacionada à idade (p<0,001). As calcificações possuem relação com o sexo (p = 0,03) com maior razão de chance de desenvolvimento em homens (odds ratio [OR] = 1,55). O tabagismo (p<0,001), o sedentarismo (p<0,001), a hipertensão arterial sistêmica (p<0,001), o diabetes mellitus (p = 0,04) e as dislipidemias (p<0,001) mostraram associação positiva. Conclusão: A prevalência de achados incidentais de CAC foi de 44%; variam em maior número entre leve e grave; maior razão de chance no sexo masculino e aumento da prevalência com a idade. Portanto, a TC de tórax mostra-se um efetivo método para avaliar as CAC, e juntamente com a história clínica do paciente pode ser utilizada para medir os fatores de risco para doenças cardiovasculares e intervir no desfecho do quadro.(AU)


Introduction: Coronary artery calcifications (CAC) are shown to be a predictive factor of cardiovascular diseases. Computed tomography (CT) of the chest with a low-dose acquisition protocol is accurate in identifying CAC and provides incidental findings of these calcifications, which are commonly overlooked. This study will analyze the prevalence of incidental findings of calcification in coronary arteries in non-cardiac individuals undergoing chest CT. Methods: Consecutive cross-sectional study of an analytical and descriptive nature. Individuals of both genders who underwent chest CT by referral, over 18 years of age and without heart disease were included. Data collection was carried out using medical records and a self-applied anamnesis form. The variables referring to the CAC and the extension of the impairment were obtained from the reassessment of the chest CT images available in the institution's system. The exams were anonymized and evaluated by two experienced radiologists. P≤0.05 was considered statistically significant. Results: 397 exams were analyzed. A prevalence of calcifications was found in 176 (44%) of the cases. The existence of these coronary calcifications is related to age (p<0.001). Calcifications are related to gender (p = 0.03) with a higher odds ratio of development in men (odds ratio [OR] = 1.55). Smoking (p<0.001), sedentary lifestyle (p<0.001), systemic arterial hypertension (p<0.001), Diabetes Mellitus (p = 0.04), and dyslipidemia (p<0.001) showed a positive association. Conclusion: The prevalence of incidental CAC findings was 44%; vary in greater numbers between mild and severe; higher odds ratio in males and increased prevalence with age. Therefore, chest CT proves to be an effective method to assess CAC, and together with the patient's clinical history, it can be used to measure risk factors for CVD and intervene in the outcome of the condition.(AU)


Assuntos
Humanos , Masculino , Feminino , Adulto , Achados Incidentais , Calcificação Vascular/fisiopatologia , Calcificação Vascular/prevenção & controle , Calcificação Vascular/diagnóstico por imagem , Tabagismo/etiologia , Dor no Peito/etiologia , Tomografia Computadorizada por Raios X/métodos , Diabetes Mellitus/etiologia , Dispneia/etiologia , Hemoptise/etiologia , Hipertensão/etiologia
17.
Ren Fail ; 45(1): 2182603, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36856310

RESUMO

PURPOSE: To evaluate the effects of magnesium (Mg) supplementation on vascular calcification (VC) in patients with chronic kidney disease (CKD). METHODS: PubMed, Embase, Cochrane Library, Medline, Web of Science, CNKI, VIP, and WanFang databases were searched from build to July 2022. Randomized controlled trials (RCT) and non-RCT related to whether Mg supplementation inhibits VC in patients with CKD were included. The literature was screened according to inclusion and exclusion criteria, and quality evaluation and data collection were performed. Meta-analysis was performed using Review Manager 5.4 software. RESULTS: 8 RCTs and 1 non-RCT studies with a total of 496 patients were eventually included. Compared to control groups, Mg supplementation increased serum Mg levels (SMD = 1.26, 95% CI: -0.70 to 1.82, p < 0.001), but it was not statistically significant in alleviating the degree of VC, increasing T50, and reducing serum phosphorus (P) levels in patients with CKD (all p > 0.05). Oral Mg reduced left (WMD=-0.06, 95% CI. -0.11 to -0.01, p = 0.03) and right (WMD=-0.07, 95% CI: -0.13 to -0.01, p = 0.02) carotid intima-media thickness (cIMT). Additionally, calcium (Ca) (SMD=-0.43, 95% CI: -0.74 to -0.11, p = 0.008) and parathyroid hormone (PTH) (SMD=-0.43, 95% CI: -0.75 to -0.11, p = 0.008) levels were reduced by increasing dialysate Mg concentration. CONCLUSIONS: Mg supplementation increased serum Mg levels and reduced Ca, PTH, and cIMT, but it did not reduce VC scores in patients with CKD. This still requires further studies with larger samples to evaluate the effect of Mg supplementation on VC.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Magnésio , Calcificação Vascular/etiologia , Calcificação Vascular/prevenção & controle , Soluções para Diálise , Cálcio , Hormônio Paratireóideo , Insuficiência Renal Crônica/complicações
18.
Eur J Pharmacol ; 945: 175610, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858340

RESUMO

BACKGROUND: Recent clinical evidences show that caspase-1 inhibitor-VX-765 attenuates atherosclerosis in ApoE deficient mice. However, there is rarely information about the effect of VX-765 on hyperphosphatemia-induced vascular smooth muscle cells (VSMCs) calcification or vascular calcification in chronic kidney disease (CKD) rats. Here we investigate the effect of VX-765 on vascular calcification in uremia circumstances. METHODS: Hyperphosphatemia-induced VSMC calcification were evaluated by Alizarin Red S. Aortas from CKD rats which were gavaged with VX-765 were examined for calcification signal using micro-CT. Levels of NLRP3, caspase-1, and GSDMD were measured by quantitative real-time PCR, western blotting, immunofluorescence assay, and immunohistochemistry. RESULTS: We demonstrated for the first time that the levels of NLRP3, caspase-1, GSDMD, IL-1ß, and IL-18 were up-regulated in hyperphosphatemia-induced calcifying VSMCs. Blockade of caspase-1 activation by VX-765 inhibited pyroptosis-related molecules and VSMC calcification in a concentration-dependent manner in vitro. Further analysis of aortas from calcified CKD rats showed an up-regulation of caspase-1 and GSDMD expression compared with those non-calcified vascular tissue from control rats or with those decreased-calcified vascular tissue from CKD rats treated with 50 mg/kg/d, which indicated that pyroptotic indicators were tightly correlated with CKD arterial calcification. In vitro studies further demonstrated that VX-765 ameliorated hyperphosphatemia-induced VSMCs calcification through inhibiting the STAT3 activation. CONCLUSIONS: Our findings indicated that VX-765 could inhibit hyperphosphatemia-induced calcifying VSMCs and ameliorate vascular calcification in CKD rats. VX-765 might be a potential treatment strategy for CKD vascular calcification.


Assuntos
Hiperfosfatemia , Insuficiência Renal Crônica , Calcificação Vascular , Animais , Ratos , Caspases/metabolismo , Células Cultivadas , Músculo Liso Vascular , Miócitos de Músculo Liso , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/prevenção & controle , Calcificação Vascular/induzido quimicamente
19.
Glycoconj J ; 40(2): 149-158, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807052

RESUMO

Vascular calcification is an abnormal process in which bone specific hydroxyapatite crystals are actively deposited on the vascular wall mediated by phenotypic differentiated smooth muscle cells and other mesenchymal cells under various pathological conditions. It is one of the important characteristics in the occurrence and development of atherosclerosis, prevalent in patients with type 2 diabetes and advanced chronic kidney disease, especially those requiring maintenance hemodialysis, with severely threatening human health. Previous studies have shown that the early diagnosis and control of vascular calcification is of great significance for cardiovascular risk stratification, prevention of acute cardiovascular events, which can greatly improve the prognosis and quality of life of patients. Galectins are a family of lectin superfamily. It is widely distributed in various animals and plays an important role in many physiological and pathological processes, such as cell adhesion, apoptosis, inflammatory response, tumor metastasis and so on. Many biomarker-and association-related studies and Preclinical-mechanistic studies have suggested that galactose-specific lectin-3 (galectin-3) plays an important role in vascular calcification and vascular intimal calcification (VIC) calcification induced by Wnt/ßcatenin signaling pathway, NF-κB signaling pathway and ERK1/2 signaling pathway. This paper mainly expounds the role and mechanism of galectin-3 in vascular calcification under different pathological conditions including atherosclerosis, diabetes and chronic kidney disease.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Calcificação Vascular , Animais , Humanos , Galectina 3/genética , Galectina 3/efeitos adversos , Galectina 3/metabolismo , Qualidade de Vida , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle , Galectinas/genética , Células Cultivadas
20.
Metallomics ; 15(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36808527

RESUMO

Calcium balance is abnormal in adults with chronic kidney disease (CKD) and is associated with the development of vascular calcification. It is currently not routine to screen for vascular calcification in CKD patients. In this cross-sectional study, we investigate whether the ratio of naturally occurring calcium (Ca) isotopes, 44Ca and 42Ca, in serum could be used as a noninvasive marker of vascular calcification in CKD. We recruited 78 participants from a tertiary hospital renal center: 28 controls, 9 subjects with mild-moderate CKD, 22 undertaking dialysis and 19 who received a kidney transplant. For each participant, systolic blood pressure, ankle brachial index, pulse wave velocity, and estimated glomerular filtration rate were measured, along with serum markers. Calcium concentrations and isotope ratios were measured in urine and serum. While we found no significant association between urine Ca isotope composition (noted δ44/42Ca) between the different groups, δ44/42Ca values in serum were significantly different between healthy controls, subjects with mild-moderate CKD and those undertaking dialysis (P < 0.01). Receiver operative characteristic curve analysis shows that the diagnostic utility of serum δ44/42Ca for detecting medial artery calcification is very good (AUC = 0.818, sensitivity 81.8% and specificity 77.3%, P < 0.01), and performs better than existing biomarkers. Although our results will need to be verified in prospective studies across different institutions, serum δ44/42Ca has the potential to be used as an early screening test for vascular calcification.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Adulto , Humanos , Cálcio , Isótopos de Cálcio , Estudos Prospectivos , Análise de Onda de Pulso , Estudos Transversais , Insuficiência Renal Crônica/complicações , Calcificação Vascular/complicações , Calcificação Vascular/prevenção & controle , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...